Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28.406
1.
Expert Rev Mol Diagn ; : 1-19, 2024 May 11.
Article En | MEDLINE | ID: mdl-38709202

BACKGROUND: Although anoikis plays a role in cancer metastasis and aggressiveness, it has rarely been reported in diffuse large B cell lymphoma (DLBCL). METHODS: We obtained RNA sequencing data and matched clinical data from the GEO database. An anoikis-related genes (ARGs)-based risk signature was developed in GSE10846 training cohort and validated in three other cohorts. Additionally, we predicted half-maximal inhibitory concentration (IC50) of drugs based on bioinformatics method and obtained the actual IC50 to some chemotherapy drugs via cytotoxicity assay. RESULTS: The high-risk group, as determined by our signature, was associated with worse prognosis and an immunosuppressive environment in DLBCL. Meanwhile, the nomogram based on eight variables had more accurate ability in forecasting the prognosis than the international prognostic index in DLBCL. The prediction of IC50 indicated that DLBCL patients in the high-risk group were more sensitive to doxorubicin, IPA-3, lenalidomide, gemcitabine, and CEP.701, while patients in the low-risk group were sensitive to cisplatin and dasatinib. Consistent with the prediction, cytotoxicity assay suggested the higher sensitivity to doxorubicin and gemcitabine and the lower sensitivity to dasatinib in the high-risk group in DLBCL. CONCLUSION: The ARG-based signature may provide a promising direction for prognosis prediction and treatment optimization for DLBCL patients.

2.
Heliyon ; 10(9): e30351, 2024 May 15.
Article En | MEDLINE | ID: mdl-38726158

In the context of the burgeoning progression of wireless network technology and the corresponding escalation in the demand for mobile Internet-based multimedia transmission services, the task of preserving and augmenting user satisfaction has emerged as an imperative concern. This necessitates a sophisticated and accurate evaluation of multimedia service quality within the sphere of wireless networks. To systematically address the nuanced issue of user experience quality, the present study introduces a novel method for evaluating multimedia Quality of Experience (QoE) in wireless networks, employing an advanced deep learning model as the underlying analytical framework. Initially, the research undertakes the task of modeling the video session process, giving due consideration to the status of each temporal interval within the session's architecture. Subsequently, the challenge of QoE prediction is dissected and investigated through the lens of recurrent neural networks (RNNs), culminating in the proposition of an all-encompassing QoE prediction model that harmoniously integrates video information, Quality of Service (QoS) data, user behavior analytics, and facial expression analysis. The empirical segment of this research serves to validate the efficacy of the suggested video QoE evaluation method, engaging both quantitative and qualitative comparison metrics with contemporaneous state-of-the-art QoE models, employing the RTVCQoE dataset as the empirical foundation. The experimental findings illuminate that the QoE model elucidated in this study transcends competing models in performance metrics such as PLCC, SRCC, and KRCC. Consequently, this investigation stands as a seminal contribution to academic literature, furnishing an exacting and dependable QoE evaluation methodology. Such a contribution augments the user experience landscape in multimedia services within wireless networks, and instigates further scholarly exploration and technological innovation in the mobile Internet domain.

3.
PLoS Med ; 21(5): e1004389, 2024 May.
Article En | MEDLINE | ID: mdl-38728364

BACKGROUND: It remains unclear whether intensification of the chemotherapy backbone in tandem with an anti-EGFR can confer superior clinical outcomes in a cohort of RAS/BRAF wild-type colorectal cancer (CRC) patients with initially unresectable colorectal liver metastases (CRLM). To that end, we sought to comparatively evaluate the efficacy and safety of cetuximab plus FOLFOXIRI (triplet arm) versus cetuximab plus FOLFOX (doublet arm) as a conversion regimen (i.e., unresectable to resectable) in CRC patients with unresectable CRLM. METHODS AND FINDINGS: This open-label, randomized clinical trial was conducted from April 2018 to December 2022 in 7 medical centers across China, enrolling 146 RAS/BRAF wild-type CRC patients with initially unresectable CRLM. A stratified blocked randomization method was utilized to assign patients (1:1) to either the cetuximab plus FOLFOXIRI (n = 72) or cetuximab plus FOLFOX (n = 74) treatment arms. Stratification factors were tumor location (left versus right) and resectability (technically unresectable versus ≥5 metastases). The primary outcome was the objective response rate (ORR). Secondary outcomes included the median depth of tumor response (DpR), early tumor shrinkage (ETS), R0 resection rate, progression-free survival (PFS), overall survival (not mature at the time of analysis), and safety profile. Radiological tumor evaluations were conducted by radiologists blinded to the group allocation. Primary efficacy analyses were conducted based on the intention-to-treat population, while safety analyses were performed on patients who received at least 1 line of chemotherapy. A total of 14 patients (9.6%) were lost to follow-up (9 in the doublet arm and 5 in the triplet arm). The ORR was comparable following adjustment for stratification factors, with 84.7% versus 79.7% in the triplet and doublet arms, respectively (odds ratio [OR] 0.70; 95% confidence intervals [CI] [0.30, 1.67], Chi-square p = 0.42). Moreover, the ETS rate showed no significant difference between the triplet and doublet arms (80.6% (58/72) versus 77.0% (57/74), OR 0.82, 95% CI [0.37, 1.83], Chi-square p = 0.63). Although median DpR was higher in the triplet therapy group (59.6%, interquartile range [IQR], [50.0, 69.7] versus 55.0%, IQR [42.8, 63.8], Mann-Whitney p = 0.039), the R0/R1 resection rate with or without radiofrequency ablation/stereotactic body radiation therapy was comparable with 54.2% (39/72) of patients in the triplet arm versus 52.7% (39/74) in the doublet arm. At a median follow-up of 26.2 months (IQR [12.8, 40.5]), the median PFS was 11.8 months in the triplet arm versus 13.4 months in the doublet arm (hazard ratio [HR] 0.74, 95% CI [0.50, 1.11], Log-rank p = 0.14). Grade ≥ 3 events were reported in 47.2% (35/74) of patients in the doublet arm and 55.9% (38/68) of patients in the triplet arm. The triplet arm was associated with a higher incidence of grade ≥ 3 neutropenia (44.1% versus 27.0%, p = 0.03) and diarrhea (5.9% versus 0%, p = 0.03). The primary limitations of the study encompass the inherent bias in subjective surgical decisions regarding resection feasibility, as well as the lack of a centralized assessment for ORR and resection. CONCLUSIONS: The combination of cetuximab with FOLFOXIRI did not significantly improve ORR compared to cetuximab plus FOLFOX. Despite achieving an enhanced DpR, this improvement did not translate into improved R0 resection rates or PFS. Moreover, the triplet arm was associated with an increase in treatment-related toxicity. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03493048.


Antineoplastic Combined Chemotherapy Protocols , Camptothecin , Cetuximab , Colorectal Neoplasms , Fluorouracil , Leucovorin , Liver Neoplasms , Organoplatinum Compounds , Proto-Oncogene Proteins B-raf , Humans , Cetuximab/administration & dosage , Cetuximab/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Male , Middle Aged , Liver Neoplasms/secondary , Liver Neoplasms/drug therapy , Female , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Leucovorin/therapeutic use , Leucovorin/administration & dosage , Fluorouracil/therapeutic use , Fluorouracil/administration & dosage , Organoplatinum Compounds/therapeutic use , Organoplatinum Compounds/administration & dosage , Proto-Oncogene Proteins B-raf/genetics , Aged , Adult , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Camptothecin/administration & dosage , Treatment Outcome , ras Proteins/genetics
4.
Medicine (Baltimore) ; 103(19): e38051, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728488

This study aimed to explore the potential correlation between atherosclerotic cardiovascular disease (ASCVD) and diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM). We enrolled 6540 patients with T2DM who were receiving chronic disease management for hypertension, hyperglycemia, and hyperlipidemia in Chengyang District of Qingdao. Among them, 730 had ASCVD (ASCVD group), which 5810 did not (N-ASCVD group). The results showed significantly higher levels of age, blood glucose, glycosylated hemoglobin (HbA1c), systolic blood pressure, ASCVD family history, female proportion, and DR incidence in the N-ASCVD group. Additionally, the glomerular filtration rate was significantly lower in the ASCVD group. Logistic regression analysis revealed a positive correlation between DR and ASCVD risk. DR was further categorized into 2 subtypes, nonproliferative DR (NPDR) and proliferative DR (PDR), based on e lesion severity. Interestingly, only the PDR was associated with ASCVD. Even after accounting for traditional ASCVD risk factors such as age, sex, and family history, PDR remained associated with ASCVD, with a staggering 718% increase in the risk for patients with PDR. Therefore, there is a strong association between ASCVD and DR in individuals with T2DM, with PDR particularly exhibiting an independent and positive correlation with increased ASCVD risk.


Atherosclerosis , Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Female , Male , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/etiology , Middle Aged , Atherosclerosis/epidemiology , Atherosclerosis/etiology , Aged , Risk Factors , China/epidemiology , Glycated Hemoglobin/analysis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Blood Glucose/analysis , Blood Glucose/metabolism , Incidence
5.
CNS Neurosci Ther ; 30(5): e14744, 2024 05.
Article En | MEDLINE | ID: mdl-38727249

BACKGROUND: Stroke is an acute cerebrovascular disease in which brain tissue is damaged due to sudden obstruction of blood flow to the brain or the rupture of blood vessels in the brain, which can prompt ischemic or hemorrhagic stroke. After stroke onset, ischemia, hypoxia, infiltration of blood components into the brain parenchyma, and lysed cell fragments, among other factors, invariably increase blood-brain barrier (BBB) permeability, the inflammatory response, and brain edema. These changes lead to neuronal cell death and synaptic dysfunction, the latter of which poses a significant challenge to stroke treatment. RESULTS: Synaptic dysfunction occurs in various ways after stroke and includes the following: damage to neuronal structures, accumulation of pathologic proteins in the cell body, decreased fluidity and release of synaptic vesicles, disruption of mitochondrial transport in synapses, activation of synaptic phagocytosis by microglia/macrophages and astrocytes, and a reduction in synapse formation. CONCLUSIONS: This review summarizes the cellular and molecular mechanisms related to synapses and the protective effects of drugs or compounds and rehabilitation therapy on synapses in stroke according to recent research. Such an exploration will help to elucidate the relationship between stroke and synaptic damage and provide new insights into protecting synapses and restoring neurologic function.


Stroke , Synapses , Humans , Animals , Synapses/pathology , Synapses/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/complications , Stroke/physiopathology
6.
Front Public Health ; 12: 1349753, 2024.
Article En | MEDLINE | ID: mdl-38699425

Background: An increase in Heatstroke cases occurred in southwest China in 2022 due to factors like global warming, abnormal temperature rise, insufficient power supply, and other contributing factors. This resulted in a notable rise in Heatstroke patients experiencing varying degrees of organ dysfunction. This descriptive study aims to analyze the epidemiology and clinical outcomes of Heatstroke patients in the ICU, providing support for standardized diagnosis and treatment, ultimately enhancing the prognosis of Heatstroke. Methods: A retrospective, multicenter, descriptive analysis was conducted on Heatstroke patients admitted to ICUs across 83 hospitals in southwest China. Electronic medical records were utilized for data collection, encompassing various aspects such as epidemiological factors, onset symptoms, complications, laboratory data, concurrent infections, treatments, and patient outcomes. Results: The dataset primarily comprised classic heatstroke, with 477 males (55% of total). The patient population had a median age of 72 years (range: 63-80 years). The most common initial symptoms were fever, mental or behavioral abnormalities, and fainting. ICU treatment involved respiratory support, antibiotics, sedatives, and other interventions. Among the 700 ICU admissions, 213 patients had no infection, while 487 were diagnosed with infection, predominantly lower respiratory tract infection. Patients presenting with neurological symptoms initially (n = 715) exhibited higher ICU mortality risk compared to those without neurological symptoms (n = 104), with an odds ratio of 2.382 (95% CI 1.665, 4.870) (p = 0.017). Conclusion: In 2022, the majority of Heatstroke patients in southwest China experienced classical Heatstroke, with many acquiring infections upon admission to the ICU. Moreover, Heatstroke can result in diverse complications.


Heat Stroke , Intensive Care Units , Humans , Heat Stroke/epidemiology , Heat Stroke/mortality , Male , China/epidemiology , Female , Retrospective Studies , Aged , Middle Aged , Aged, 80 and over , Intensive Care Units/statistics & numerical data , Risk Factors
7.
Sci Total Environ ; 932: 172992, 2024 May 07.
Article En | MEDLINE | ID: mdl-38719037

The variability of element carbon (EC) mixed with secondary species significantly complicates the assessment of its environmental impact, reflecting the complexity and diversity of EC-containing particles' composition and morphology during their ascent and regional transport. While the catalytic role of EC in secondary aerosol formation is recognized, the effects of heterogeneous chemistry on secondary species formation within diverse EC particle types are not thoroughly understood, particularly in the troposphere. Alpine sites offer a prime environment to explore EC properties post-transport from the ground to the free troposphere. Consequently, we conducted a comprehensive study on the genesis of secondary aerosols in EC-containing particles at Mt. Hua (altitude: 2069 m) from 1 May to 10 July, using a single particle aerosol mass spectrometer (SPAMS). Our analysis identified six major EC particle types, with EC-K, EC-SN, and EC-NaK particles accounting for 27.6 %, 27.0 %, and 19.6 % of the EC particle population, respectively. The concentration-weighted trajectory (CWT) indicated that the lower free troposphere over Mt. Hua is significantly affected by anthropogenic emissions at ground-level, predominantly from northwestern and eastern China. Atmospheric interactions are crucial in generating high sulfate levels in EC-SN and EC-OC particles (> 70 %) and notable nitrate levels in EC-K, EC-BB, and EC-Fe particles (> 80 %). The observed high chloride content in EC-OC particles (56 ± 32 %) might enhance chlorine's reactivity with organic compounds via heterogeneous reactions within the troposphere. Distinct diurnal cycles for sulfate and nitrate are mainly driven by varying transport dynamics and formation processes, showing minimal dependency on EC particle types. Enhanced nocturnal oxalate conversion in EC-Fe particles is likely due to the aqueous oxidation of precursors, with Fe-catalyzed Fenton reactions enhancing OH radical production. This investigation provides critical insights into EC's role in secondary aerosol development during its transport in the lower free troposphere.

8.
Front Med (Lausanne) ; 11: 1383279, 2024.
Article En | MEDLINE | ID: mdl-38741766

Background: Trastuzumab emtansine (T-DM1) has been approved worldwide for treating metastatic breast cancer (mBC) in patients who have received first-line therapy, shown disease progression, and are human epidermal growth factor receptor 2 (HER2)-positive. T-DM1 received approval in China to treat early-stage breast cancer (BC) in 2020 and for mBC in 2021. In March 2023, T-DM1 was included in medical insurance coverage, significantly expanding the eligible population. Materials and methods: This post-marketing observational study aimed to assess the safety and effectiveness of T-DM1 in real-world clinical practice in China. This study enrolled 31 individuals with HER2-positive early-stage BC and 70 individuals with HER2-positive advanced BC from 8 study centers in Shandong Province, China. The T-DM1 dosage was 3.6 mg/kg injected intravenously every 3 weeks until the disease advanced or the drug toxicity became uncontrollable, whichever occurred earlier. Additionally, efficacy and safety information on T-DM1 were collected. Results: During the 7-month follow-up period, no recurrence or metastases were observed in patients who had early-stage BC. The disease control rate was 31.43% (22/70) in patients with advanced BC. The most common adverse effect of T-DM1 was thrombocytopenia, with an incidence of 69.31% (70/101), and the probability of Grade ≥ 3 thrombocytopenia was 11.88% (12/101). Conclusion: This real-world study demonstrated that T-DM1 had good efficacy and was well tolerated by both HER2-positive early-stage BC and mBC patients.

9.
bioRxiv ; 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38712286

Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein. and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.

10.
Natl Sci Rev ; 11(6): nwae114, 2024 Jun.
Article En | MEDLINE | ID: mdl-38712324

Although single-atom Cu sites exhibit high efficiency in CO2 hydrogenation to methanol, they are prone to forming Cu nanoparticles due to reduction and aggregation under reaction conditions, especially at high temperatures. Herein, single-atom Cu sites stabilized by adjacent Na+ ions have been successfully constructed within a metal-organic framework (MOF)-based catalyst, namely MOF-808-NaCu. It is found that the electrostatic interaction between the Na+ and Hδ- species plays a pivotal role in upholding the atomic dispersion of Cu in MOF-808-NaCu during CO2 hydrogenation, even at temperatures of up to 275°C. This exceptional stabilization effect endows the catalyst with excellent activity (306 g·kgcat-1·h-1), high selectivity to methanol (93%) and long-term stability at elevated reaction temperatures, far surpassing the counterpart in the absence of Na+ (denoted as MOF-808-Cu). This work develops an effective strategy for the fabrication of stable single-atom sites for advanced catalysis by creating an alkali-decorated microenvironment in close proximity.

11.
Plant Physiol Biochem ; 211: 108676, 2024 May 03.
Article En | MEDLINE | ID: mdl-38714125

ATP-binding cassette (ABC) transporters were crucial for various physiological processes like nutrition, development, and environmental interactions. Selenium (Se) is an essential micronutrient for humans, and its role in plants depends on applied dosage. ABC transporters are considered to participate in Se translocation in plants, but detailed studies in soybean are still lacking. We identified 196 ABC genes in soybean transcriptome under Se exposure using next-generation sequencing and single-molecule real-time sequencing technology. These proteins fell into eight subfamilies: 8 GmABCA, 51 GmABCB, 39 GmABCC, 5 GmABCD, 1 GmABCE, 10 GmABCF, 74 GmABCG, and 8 GmABCI, with amino acid length 121-3022 aa, molecular weight 13.50-341.04 kDa, and isoelectric point 4.06-9.82. We predicted a total of 15 motifs, some of which were specific to certain subfamilies (especially GmABCB, GmABCC, and GmABCG). We also found predicted alternative splicing in GmABCs: 60 events in selenium nanoparticles (SeNPs)-treated, 37 in sodium selenite (Na2SeO3)-treated samples. The GmABC genes showed differential expression in leaves and roots under different application of Se species and Se levels, most of which are belonged to GmABCB, GmABCC, and GmABCG subfamilies with functions in auxin transport, barrier formation, and detoxification. Protein-protein interaction and weighted gene co-expression network analysis suggested functional gene networks with hub ABC genes, contributing to our understanding of their biological functions. Our results illuminate the contributions of GmABC genes to Se accumulation and tolerance in soybean and provide insight for a better understanding of their roles in soybean as well as in other plants.

12.
Int Immunopharmacol ; 134: 112186, 2024 May 10.
Article En | MEDLINE | ID: mdl-38733824

BACKGROUND: Although the pathophysiological mechanism of septic cardiomyopathy has been continuously discovered, it is still a lack of effective treatment method. Cortistatin (CST), a neuroendocrine polypeptide of the somatostatin family, has emerged as a novel cardiovascular-protective peptide, but the specific mechanism has not been elucidated. PURPOSE: The aim of our study is to explore the role of CST in cardiomyocytes pyroptosis and myocardial injury in sepsis and whether CST inhibits cardiomyocytes pyroptosis through specific binding with somastatin receptor 2 (SSTR2) and activating AMPK/Drp1 signaling pathway. METHODS AND RESULTS: In this study, plasma CST levels were significantly high and were negatively correlated with N-terminal pro-B type natriuretic peptide (NT-proBNP), a biomarker for cardiac dysfunction, in patients with sepsis. Exogenous administration of CST significantly improved survival rate and cardiac function in mouse models of sepsis by inhibiting the activation of the NLRP3 inflammasome and pyroptosis of cardiomyocytes (decreased cleavage of caspase-1, IL-1ß and gasdermin D). Pharmacological inhibition and genetic ablation revealed that CST exerted anti-pyroptosis effects by specifically binding to somatostatin receptor subtype 2 (SSTR2), thus activating AMPK and inactivating Drp1 to inhibit mitochondrial fission in cardiomyocytes. CONCLUSIONS: This study is the first to report that CST attenuates septic cardiomyopathy by inhibiting cardiomyocyte pyroptosis through the SSTR2-AMPK-Drp1-NLRP3 pathway. Importantly, CST specifically binds to SSTR2, which promotes AMPK phosphorylation, inhibits Drp1-mediated mitochondrial fission, and reduces ROS levels, thereby inhibiting NLRP3 inflammasome activation-mediated pyroptosis and alleviating sepsis-induced myocardial injury.

13.
Neuroscience ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38734302

Postoperative stroke is a challenging and potentially devastating complication after elective carotid endarterectomy (CEA). We previously demonstrated that transmembrane protein 166 (TMEM166) levels were directly related to neuronal damage after cerebral ischemia-reperfusion injury in rats. In this subsequent clinical study, we aimed to evaluate the prognostic value of TMEM166 in patients suffering from post-CEA strokes. Thirty-five patients undergoing uncomplicated elective CEA and 8 patients who suffered ischemic strokes after CEA were recruited. We evaluated the protein level and expression of TMEM166 in patients diagnosed with postoperative strokes and compared it to those in patients who underwent uncomplicated elective CEA. Blood samples and carotid artery plaques were collected and analyzed. High expressions of TMEM166 were detected by immunofluorescence staining and Western Blot in carotid artery plaques of all patients who underwent CEA. Furthermore, circulating TMEM166 concentrations were statistically higher in post-CEA stroke patients than in patients allocated to the control group. Mean plasma concentrations of inflammatory markers, including interleukin 6 (IL-6) and C-reactive protein (CRP), were also elevated in patients with postoperative strokes. Therefore, based on these findings, we hypothesize that elevated TMEM166 levels, accompanied by a strong inflammatory response, serve as a useful biomarker for risk assessment of postoperative stroke following CEA.

14.
Int J Biol Macromol ; : 132137, 2024 May 09.
Article En | MEDLINE | ID: mdl-38734350

The preparation and use of gelatins from fish by-products have attracted much attention in the field of food science. Herein, four types of tilapia head gelatins were extracted and characterized: hot water-pretreated gelatin (HWG), acetic acid-pretreated gelatin (AAG), sodium hydroxide-pretreated gelatin (SHG), and pepsin enzyme-pretreated gelatin (PEG). The gel strength values followed the order: PEG (74 ±â€¯1 Bloom) > AAG (66 ±â€¯1) > HWG (59 ±â€¯1) > SHG (34 ±â€¯1). The foaming properties, fish oil emulsion viscosity, emulsion activity, and emulsion stabilization ability followed this order: PEG > HWG ≥ AAG > SHG. The effect mechanisms of extraction methods and gelatin concentrations on the emulsion stability involved the interfacial tension, emulsion viscosity, and fat-binding capacity. This work provided important knowledge for analyzing the relations between the structure and function of gelatin. It also provided a high-value application method of fish wastes.

15.
Exp Cell Res ; : 114071, 2024 May 08.
Article En | MEDLINE | ID: mdl-38729336

Atherosclerosis preferentially occurs in areas with low shear stress (LSS) and oscillatory flow. LSS has been demonstrated to correlate with the development of atherosclerosis. The sphingosine 1-phosphate receptor 1 (S1PR1), involving intravascular blood flow sensing, regulates vascular development and vascular barrier function. However, whether LSS affects atherosclerosis via regulating S1PR1 remains incompletely clear. In this study, immunostaining results of F-actin, ß-catenin, and VE-cadherin indicated that LSS impaired endothelial barrier function in human umbilical vein endothelial cells (HUVECs). Western blot analysis showed that LSS resulted in blockage of autophagic flux in HUVECs. In addition, autophagy agonist Rapamycin (Rapa) antagonized LSS-induced endothelial barrier dysfunction, whereas autophagic flux inhibitor Bafilomycin A1 (BafA1) exacerbated it, indicating that LSS promoted endothelial barrier dysfunction by triggering autophagic flux blockage. Notably, gene expression analysis revealed that LSS downregulated S1PR1 expression, which was antagonized by Rapa. Selective S1PR1 antagonist W146 impaired endothelial barrier function of HUVECs under high shear stress (HSS) conditions. Moreover, our data showed that expression of GAPARAPL2, a member of autophagy-related gene 8 (Atg8) proteins, was decreased in HUVECs under LSS conditions. Autophagic flux blockage induced by GAPARAPL2 knockdown inhibited S1PR1, aggravated endothelial barrier dysfunction of HUVECs in vitro, and promoted aortic atherosclerosis in ApoE-/- mice in vivo. Our study demonstrates that autophagic flux blockage induced by LSS downregulates S1PR1 expression and impairs endothelial barrier function. GABARAPL2 inhibition is involved in LSS-induced autophagic flux blockage, which impairs endothelial barrier function via downregulation of S1PR1.

16.
Article En | MEDLINE | ID: mdl-38724856

BACKGROUND: While treatment advancements have prolonged the lives of patients with head and neck cancer, the subgroups of these patients at higher risk for cardiovascular disease (CVD) mortality remain unclear. METHODS: We analyzed data from the Surveillance, Epidemiology, and End Results (SEER) database for patients diagnosed with head and neck cancer from 2000 to 2019. We compared their CVD mortality against the general US population using standardized mortality ratios (SMRs). RESULTS: Our analysis included 474,366 patients, identifying that 14% of deaths were due to CVD, with an SMR of 1.19. Notably, patients under the age of 39 had a CVD SMR increase of over 100-fold. Those with distant tumor stages showed the highest CVD SMR of 1.52 (95% CI 1.50-1.54). An upward trend in SMR to 2.53 (95% CI 2.51-2.56) was observed from 2011 to 2019. Within the initial 5-year post-diagnosis, the SMR for CVD was 3.17 (95% CI 3.14-3.20), which exceeded the general population's rates but declined in the 5-20-year range after diagnosis. Patients who did not any therapy had the greatest CVD SMR of 2.26 (95% CI 2.24-2.28). Hypopharyngeal cancer patients exhibited the highest CVD SMR of 1.54 (95% CI 1.52-1.56). CONCLUSIONS: The study highlights that head and neck cancer patients, especially younger individuals and those with advanced disease stages, face substantial CVD mortality risks. The CVD SMR peaks within 5 years following diagnosis. Patients abstaining from treatment bear the highest risk of CVD mortality. Cardioprotective measures should be considered critical for this patient population.

17.
Chem Commun (Camb) ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38726591

Developing an intermediate-temperature solid oxide fuel cell (IT-SOFC) is one of the most promising ways of achieving carbon neutrality, but its air-electrode is restricted by the conflict between the sluggish catalytic activity and durability. Herein, an A-site high-entropy perovskite composite La0.2Ba0.2Sr0.2Ca0.2Ce0.2-xCoO3-δ-xCeO2 (LBSCCC-CeO2) air-electrode material is fabricated via a one-step self-constructing strategy, which shows excellent oxygen reduction activity and stability due to the high-entropy structure and the synergy effect between LBSCCC and interfacial CeO2. This work provides a new way of fabricating high-performance air-electrodes in IT-SOFCs.

18.
Gut ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38697771

OBJECTIVE: Achieving HBV cure will require novel combination therapies of direct-acting antivirals and immunomodulatory agents. In this context, the toll-like receptor 8 (TLR8) agonist selgantolimod (SLGN) has been investigated in preclinical models and clinical trials for chronic hepatitis B (CHB). However, little is known regarding its action on immune effectors within the liver. Our aim was to characterise the transcriptomic changes and intercellular communication events induced by SLGN in the hepatic microenvironment. DESIGN: We identified TLR8-expressing cell types in the human liver using publicly available single-cell RNA-seq data and established a method to isolate Kupffer cells (KCs). We characterised transcriptomic and cytokine KC profiles in response to SLGN. SLGN's indirect effect was evaluated by RNA-seq in hepatocytes treated with SLGN-conditioned media (CM) and quantification of HBV parameters following infection. Pathways mediating SLGN's effect were validated using transcriptomic data from HBV-infected patients. RESULTS: Hepatic TLR8 expression takes place in the myeloid compartment. SLGN treatment of KCs upregulated monocyte markers (eg, S100A12) and downregulated genes associated with the KC identity (eg, SPIC). Treatment of hepatocytes with SLGN-CM downregulated NTCP and impaired HBV entry. Cotreatment with an interleukin 6-neutralising antibody reverted the HBV entry inhibition. CONCLUSION: Our transcriptomic characterisation of SLGN sheds light into the programmes regulating KC activation. Furthermore, in addition to its previously described effect on established HBV infection and adaptive immunity, we show that SLGN impairs HBV entry. Altogether, SLGN may contribute through KCs to remodelling the intrahepatic immune microenvironment and may thus represent an important component of future combinations to cure HBV infection.

19.
Clin Drug Investig ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38698285

BACKGROUND AND OBJECTIVE: Aberrant accumulation of glycosphingolipids (GSLs) in the lysosome leads to GSL storage diseases. Glucosylceramide synthase inhibitors (GCSi) have the potential to treat several GSL storage diseases by reducing the synthesis of the disease-causing GSLs. AL01211 is a potent oral GCSi under investigation for Type 1 Gaucher disease and Fabry disease. Here, we evaluate the pharmacokinetics, pharmacodynamics, safety, and tolerability of AL01211 in healthy Chinese volunteers. METHODS: AL01211 was tested in a Phase 1, single-center, randomized, double-blind, placebo-controlled study with single-dose (15 and 60 mg) and multiple-dose (30 mg) arms. RESULTS: Results of AL01211 demonstrated dose-dependent pharmacokinetics, rapid absorption (median time to maximum plasma concentration [tmax] 2.5-4 hours), relatively slow clearance rate (mean apparent total clearance from plasma [CL/F] 88.3-200 L/h) and the mean terminal half-life above 30 hours. Repeated once-daily oral administration of AL01211 for 14 days had an approximately 2-fold accumulation, reaching steady-state levels between 7 and 10 days, and led to a 73% reduction in plasma glucosylceramide (GL1) on Day 14. AL01211 was safe and well tolerated, with no identified serious adverse events. CONCLUSION: AL01211 showed a favorable pharmacokinetic, pharmacodynamics, safety, and tolerability profile in healthy Chinese volunteers. These data support the further clinical development of AL01211 as a therapy for GSL storage diseases. CLINICAL TRIAL REGISTRY: Clinical Trial Registry no. CTR20221202 ( http://www.chinadrugtrials.org.cn ) registered on 6 June 2022 and ChiCTR2200061431 ( http://www.chictr.org.cn ) registered on 24 June 2022.

20.
World J Stem Cells ; 16(4): 353-374, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38690515

Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection typically presents with fever and respiratory symptoms, which can progress to severe respiratory distress syndrome and multiple organ failure. In severe cases, these complications may even lead to death. One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response. Therefore, suppressing the overactive immune response may be an effective strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory functions, regenerative repair, and antifibrotic effects, promising an effective tool in treating COVID-19. In this paper, we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize relevant recent clinical trials, including the source of cells, the dosage and the efficacy, and the clinical value and problems in this field, providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.

...